Classifier Combination for Improved Lexical Disambiguation

نویسندگان

  • Eric Brill
  • Jun Wu
چکیده

One of the most exciting recent directions in machine learning is the discovery that the combination of multiple classifiers often results in significantly better performance than what can be achieved with a single classifier. In this paper, we first show that the errors made from three different state of the art part of speech taggers are strongly complementary. Next, we show how this complementary behavior can be used to our advantage. By using contextual cues to guide tagger combination, we are able to derive a new tagger that achieves performance significantly greater than any of the individual taggers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Classifiers for word sense disambiguation

Classifier combination is an effective and broadly useful method of improving system performance. This article investigates in depth a large number of both well-established and novel classifier combination approaches for the word sense disambiguation task, studied over a diverse classifier pool which includes feature-enhanced Näıve Bayes, Cosine, Decision List, Transformation-based Learning and...

متن کامل

Supervised Word Sense Disambiguation using Python

In this paper, we discuss the problem of Word Sense Disambiguation (WSD) and one approach to solving the lexical sample problem. We use training and test data from SENSEVAL-3 and implement methods based on Naı̈ve Bayes calculations, cosine comparison of word-frequency vectors, decision lists, and Latent Semantic Analysis. We also implement a simple classifier combination system that combines the...

متن کامل

Augmented Mixture Models for Lexical Disambiguation

This paper investigates several augmented mixture models that are competitive alternatives to standard Bayesian models and prove to be very suitable to word sense disambiguation and related classification tasks. We present a new classification correction technique that successfully addresses the problem of under-estimation of infrequent classes in the training data. We show that the mixture mod...

متن کامل

Applying a Naive Bayes Similarity Measure to Word Sense Disambiguation

We replace the overlap mechanism of the Lesk algorithm with a simple, generalpurpose Naive Bayes model that measures many-to-many association between two sets of random variables. Even with simple probability estimates such as maximum likelihood, the model gains significant improvement over the Lesk algorithm on word sense disambiguation tasks. With additional lexical knowledge from WordNet, pe...

متن کامل

Tor, TorMd: Distributional Profiles of Concepts for Unsupervised Word Sense Disambiguation

Words in the context of a target word have long been used as features by supervised word-sense classifiers. Mohammad and Hirst (2006a) proposed a way to determine the strength of association between a sense or concept and co-occurring words—the distributional profile of a concept (DPC)—without the use of manually annotated data. We implemented an unsupervised naı̈ve Bayes word sense classifier u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998